
1

ANALYTICAL GRADIENTS OF THE OPTIMIZATION

In this section, we introduce the key analytical gradients of
the trajectory optimization problem.

A. Preliminaries
According to the theory of Lie groups and Lie algebra for

robotics [1], [2], we denote the conversion from the axis-angle
rotation vector r ∈ so(3) to the rotation matrix R ∈ SO(3)
as R = exp(r∧), and the inverse conversion is denoted as
r = ln(R)∨.

According to the linear approximation of the Baker-
Campbell-Hausdorff (BCH) formula [3], we have

ln(exp(r∧1 ) exp(r
∧
2 ))

∨ ≈
{

Jl(r2)
−1r1 + r2, when r1 → 0,

Jr(r1)
−1r2 + r1, when r2 → 0.

(1)
Here, Jr(r) = Jl(−r), and Jl(r) can be calculated as

Jl(r) =
sin θ
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2
a∧, (3)

where θ and a are the angle and axis of r, respectively.

B. Gradients of Orientation Distances
Here we generally introduce the gradient regarding the

orientation distance. We define the weighted scalar distance
of orientations R and Rd as

dr(R,Rd,Wr) =
1

2
rTe Wrre, (4)

where re is defined as ln
(
RR−1

d

)∨
. Note that re is defined in

the world frame W . In addition, Wr is a semi-positive definite
matrix for weighting. Here, R is determined by a variable
x, and Rd is a constant desired orientation. Note that re is
defined in the same frame as R and Rd.

In the following derivation, for convenience, we use both
R ∈ SO(3) and r ∈ so(3) to represent the same rotation; e.g.,
R = exp(r∧) and Rd = exp(r∧d ).

The gradient of dr w.r.t. the variable x is derived as
∂dr
∂x

=
∂dr
∂re

∂re
∂x

=
∂dr
∂re

∂re
∂φ

∂φ

∂x
(5)

For convenience of the following calculation, here we intro-
duce a perturbation variable φ ∈ so(3), which means that we
left perturb R by ∆R (i.e., (∆R)R ), where ∆R = exp(φ∧).

First, it is easy to obtain
∂dr
∂re

= rTe Wr (6)

Second, regarding ∂re

∂φ , we have

∂re
∂φ

= lim
φ→0

ln
(
exp(φ∧) exp(r∧) (exp(r∧d ))

−1
)∨

φ

−
ln
(
exp(r∧) (exp(r∧d ))

−1
)∨

φ

= lim
φ→0

ln (exp(φ∧) exp(r∧e ))
∨ − ln (exp(r∧e ))

∨

φ

(7)

It follows from the BCH formula (1) that

∂re
∂φ

= lim
φ→0

Jl(re)
−1φ+ re − re

φ
= Jl(re)

−1 (8)

We thus obtain ∂dr

∂φ = rTe WrJl(re)
−1. Moreover, using (3),

we can obtain rTe Jl(re)
−1 = rTe . Thus, in special cases where

the weights for each orientation dimension are the same (i.e.,
Wr = wI), we further have ∂dr

∂φ = wrTe Jl(re)
−1 = wrTe .

Third, as the perturbation variable φ → 0, we have
∂φ
∂x = Ja(x), where Ja(x) is the space Jacobian that relates
the spatial angular velocity to ẋ.

C. Gradients of Pose Distances

Similar to the derivation of the gradients of orientation dis-
tances, the general formula of the gradients of pose distances
is derived as follows.

The weighted scalar distance between poses T and Td is
defined as

d(T ,Td,W ) =
1

2
eTWe (9)

where e = [pe; re], in which pe = p − pd and re =

ln
(
exp(r∧) (exp(r∧d ))

−1
)∨

. Here, T is determined by a
variable x, and Td is a constant desired pose. Note that e
is defined in the same frame as T and Td.

Similar to (5), we introduce a perturbation variable ϕ ∈
se(3). Then, the gradient of d w.r.t. x is derived as

∂d

∂x
=

∂d

∂e

∂e

∂ϕ

∂ϕ

∂x
(10)

where ∂d
∂e = eTW and

∂e

∂ϕ
=

[
I 0
0 Jl(re)

−1

]
(11)

Additionally, we have ∂ϕ
∂x = J(x), where J(x) is the space

Jacobian that relates the spatial twist to ẋ.

D. Gradients of Jobject

It is easy to see that Jobject is only relevant to the object
pose at time T . The gradient between the position distance
cost and the object position variable is easy to derive. Here,
we introduce the gradient regarding the orientation distance
(i.e., ∂dr

∂ro,T
). For brevity, we omit the subscripts o and T .

Similar to (7) and (8), we derive that

∂φ

∂r
=

(
∂r

∂φ

)−1

= Jl(r) (12)

We then have

∂dr
∂r

= rTe WrJl(re)
−1 ∂φ

∂r
= rTe WrJl(re)

−1Jl(r) (13)
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E. Gradients of Jfinger

We denote the Lie algebra corresponding to the object pose
To,t ∈ SE(3) as ξo,t = [po,t; ro,t] ∈ se(3), which is defined in
W . The optimization variable related to d(OTi,t,

OTi,0,Wf)
contains the object pose ξo,t and finger joint angle qi,t. For
brevity, we omit the subscripts o, i, and t. We further denote
ϑ = [ξ; q].

We can use (10) to calculate the gradient, but we still need to
know the space Jacobian that relates the fingertip twist in O to
ϑ̇. As the object frame O is moving, this Jacobian is a relative
Jacobian between the finger and object. We can calculate
this relative Jacobian using individual manipulator Jacobians
defined in W [4], in which we regard the object as a virtual
manipulator. According to (2) in [4], the relative Jacobian
between the fingertip twist in O and ϑ̇ can be expressed as

OJf(ϑ) =
[
−OΨf

OΩwJo(ξ)
OΩwJf(q)

]
, (14)

where Jo(ξ) is the space Jacobian that relates the object’s twist
in W to ξ̇, and Jf(q) is the space Jacobian that relates the
fingertip’s twist in W to q̇. Similar to (12), it can be obtained
that

Jo(ξ) =

[
I 0
0 Jl(r)

]
, (15)

where r refers to the object orientation in W . The finger
Jacobian Jf(·) can be obtained from the finger’s kinematics.
The transformation matrices Ψ and Ω are defined as

aΨb =

[
I −S(apb)
0 I

]
, aΩb =

[
aRb 0
0 aRb

]
, (16)

where S(p) refers to the skew-symmetric matrix of vector p.

F. Other Gradients

Other gradients, including the gradients of Jjoint and those
of the constraints, can be easily derived. The details are
omitted here for brevity.
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